jueves

codigo exceso,codigo aiken, codigo 5421, codigo biquinario,dos de cinco, codigo gray, alfanumericos

CÓDIGO EXCESO 3.
Es un código igual al BCD, sin embargo se deben añadir tres unidades a este para transformarlo en exceso 3.
CÓDIGO AIKEN O 2421.
La ponderación de este código es diferente al BCD, para hallar su peso se debe tomar también grupos de cuatro bits, considerando los valores 2421, por dígito decimal.
Este código se conoce como autocomplementado a uno porque sus diez valores, en la tabla 1.6; se pueden formar, complementando, a partir de los primeros cinco dígitos.
CÓDIGO 5421.
La ponderación de este código es diferente al BCD, para hallar su peso se debe tomar también grupos de cuatro bits, considerando los valores 5421, por dígito decimal. Este código se forma repitiendo los cinco primeros valores de la tabla 1.6, de modo tal, que cambia solo el bit más significativo de cero a uno.
CÓDIGO BIQUINARIO.
Necesita siete bits para formarse; siempre hay dos bits en nivel alto (uno) y los restantes cinco deben estar en nivel bajo (cero). El primer bit del código, en uno, se usa para indicar si el dígito se encuentra comprendido entre 5 y 9; el segundo bit del código, en uno, señala que se encuentra en el rango de 0 a 4. La desventaja de este código es la cantidad de bits que se deben utilizar para transmitir información, siete por cada dígito. Sin embargo, tiene la ventaja de poder realizar fáciles algoritmos para el chequeo de errores de transmisión; solamente se debe detectar que hayan dos bits, en nivel uno, por cada dato. Uno de estos se debe encontrar entre los primeros dos bits y el otro en los cinco restantes que forman el dígito.
CÓDIGO DOS DE CINCO.
Este código es similar al Biquinario, pero requiere de cinco bits para el correcto funcionamiento. Dos bits deben estar en nivel alto y los otros tres en cero.
CÓDIGO GRAY.
Este código cíclico no posee una relación directa con la ponderación de los dígitos del sistema decimal. Se forma cambiando el bit menos significativo de manera continua y consecutiva. Solamente cambia un bit, y éste, debe ser el menos significativo; de manera que no se repita con alguna combinación anterior. También se puede formar obteniendo las primeras ocho combinaciones con tres bits y luego, desde la 8va combinación hay que repetir simétricamente los valores, cambiando solamente el bit más significativo de cero a uno. Por ejemplo, la 8va posición es 0100 y a continuación viene la 9na 1100; del mismo modo, la 7ma 0101 es simétrica con la 11va 1101. El código Gray tiene aplicaciones en contactos de escobillas de motores, sistemas donde solo se necesite cambiar un bit de estado cíclicamente.
La ventaja del código Gray radica en que la probabilidad de ocurrir menos errores y problemas de transición aumenta a medida que cambian mas bits de estado simultáneamente. El cambio consecutivo del código BCD desde 0111 a 1000 puede producir transiciones intermedias que originan el 1111 antes de estabilizarse en 1000. Sin embargo, el código Gray pasará desde 0111 a 0101 cambiando solamente un bit y por lo tanto, con menos posibilidad de cometer errores.
CÓDIGOS ALFANUMÉRICOS.
Estos códigos son interpretados por el computador como caracteres e indistintamente pueden representar símbolos numéricos, símbolos de control y letras. Las computadoras se comunican mediante estos códigos y los más utilizados son el código ASCII y el UNICODE.
CÓDIGO ASCII.
ASCII: American Standard Code Interchange Information. Cada caracter alfanumérico esta formado por una cadena de siete bits. Este código representa 128 símbolos diferentes entre dígitos, letras e instrucciones de control del computador. La tabla 1.xx muestra los símbolos con su respectivo valor hexadecimal.
Código ASCII.
B6B5B4
B3B2B1B0
BIN
HEX
000
0
001
1
010
2
011
3
100
4
101
5
110
6
111
7
0000
0
NUL
DLE
SP
0
@
P
`
p
0001
1
SOH
DC1
!
1
A
Q
a
q
0010
2
STX
DC2
"
2
B
R
b
r
0011
3
ETX
DC3
#
3
C
S
c
s
0100
4
EOT
DC4
$
4
D
T
d
t
0101
5
ENQ
NAK
%
5
E
U
e
u
0110
6
ACK
SYN
&
6
F
V
f
v
0111
7
BEL
ETB
'
7
G
W
g
w
1000
8
BS
CAN
(
8
H
X
h
x
1001
9
HT
EM
)
9
I
Y
i
y
1010
A
LF
SUB
*
:
J
Z
j
z
1011
B
VT
ESC
+
;
K
[
k
{
1100
C
FF
FS
,
<
L
\
l
|
1101
D
CR
GS
-
=
M
]
m
}
1110
E
SO
RS
.
>
N
^
n
~
1111
F
SI
US
/
?
O
_
o
DEL

No hay comentarios:

Publicar un comentario